Управление образования Гурьевского муниципального округа Муниципальное бюджетное общеобразовательное учреждение «Классическая школа» г. Гурьевска

Калининградской области

Принято на заседании педагогического совета «УТВЕРЖДЕНО»

Директор МБОУ «Классическая школа

г. Гурьевска

Протокол № 16 ду. 05 2023г.

О.Ю. Чельцова Приказ № 96/6

2023г.

Дополнительная общеобразовательная общеразвивающая программа технической направленности

«Программирование беспилотных летательных аппаратов»

Возраст обучающихся:12-14 лет Срок реализации: 1 год

Автор-составитель:

Малинина Е.Г.

Педагог дополнительного образования

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дополнительная общеобразовательная общеразвивающая программа «Программирование беспилотных летательных аппаратов» предназначена для реализации в рамках внеурочной деятельности для учащихся 6-8 классов. Программа направлена на обеспечение устойчивых межпредметных связей с курсами технологии, физики, математики, воспитания интереса к технологиям и инжинирингу с раннего возраста, изучения базовых понятий и инструментов, необходимых для привлечения учащихся к решению реальных инженерных задач, формирования навыков критического мышления и творчества.

Направленность программы: научно-техническая.

Актуальность. Согласно прогнозу долгосрочного социально-экономического развития Российской Федерации на период до 2030 года, образование должно соответствовать целям опережающего развития, обеспечивать изучение не только достижений прошлого, но и технологий, которые пригодятся в будущем, ориентироваться как на знаниевый, так и деятельностный аспекты. Образовательная робототехника в полной мере реализует эти задачи.

Отличительные особенности образовательной программы

Данная образовательная программа имеет ряд отличий от существующих аналогов.

□ возможность генерировать новые задания с учетом широты тематики
программы и вариативности применения системы команд квадрокоптера
□ освоение современных способов проведения практических занятий с
целью формирования и совершенствования у учеников навыков 21 века;
□ получение обучающимися реального опыта решения практических
инженерных задач;

Адресат программы: программа предназначена для реализации в рамках внеурочной деятельности для учащихся 6-8 общеобразовательной организации

Объем и срок освоения

Срок освоения программы – 9 месяцев. На полное освоение программы требуется 72 часа, включая индивидуальные консультации и проведение соревнований.

Формы обучения

Форма обучения – очная.

Особенности организации образовательного процесса

Программа предусматривает групповые, фронтальные и индивидуальные формы работы с детьми. Состав групп: 7-10 человек.

Режим занятий, периодичность и продолжительность занятий

Общее количество часов в год – 72 часа. Продолжительность занятий – два академических часа по 45 минут. Занятия проводятся 1 раза в неделю по 2 академических часа.

Педагогическая целесообразность

□ охватывает современные и универсальные технологии, позволяющие

Практическая значимость курса заключается в том, что он способствует более успешному овладению знаниями и умениями по программированию, моделированию, конструированию через развитие самостоятельности обучающихся и на основе сквозной проектной задачи: программирования современных квадрокоптеров.

Ведущие теоретические идеи

Ведущая идея данной программы — создание современной практикоориентированной высокотехнологичной образовательной среды, позволяющей эффективно реализовывать проектно-конструкторскую и экспериментально- исследовательскую деятельность обучающихся, получать новые образовательные результаты и инновационные продукты.

Цели и задачи образовательной программы

Цель образовательной программы: развитие творческого, интеллектуального потенциала школьников посредством обучения программированию беспилотных летательных аппаратов.

Задачи образовательной программы:

Образовательные

1. Использование современных программируемых автономных систем, получение навыков и опыта программирования автономного летающего

аппарата;

- 2. Практическое изучение современных технологий программирования квадрокоптеров (и других БПЛА) с помощью конструирования и программирования автономных робототехнических систем;
- 3. Изучение и применение навыков ведения проектов, математических навыков и понятий, учета межпредметных связей с физикой, технологией, математикой и другими школьными предметами;
- 4. Изучение принципов трехмерного движения, влияния физических факторов окружающей среды и необходимых воздействий для их учета;
- 5. Расширение знаний обучающихся об окружающем мире, о мире техники;
- 6. Обучение основам моделирования и программирования, выявление способностей школьников в области программирования.

Развивающие

- 1. Развитие и формирование научного метода формирования знаний в области эффективного использования робототехнических систем;
- 2. Развитие мелкой моторики, внимательности, аккуратности и изобретательности;
- 3. Развитие навыков и качеств, ожидаемых от инженера, ученого, новатора, руководителя 21 века;
- 4. Понимание методологии командной работы, понимание скорости изменений научно-технического прогресса, осознание необходимости самоуправления при выборе профессии.

Воспитательные

- 1. Развитие патриотизма за счет понимания лидирующей роли страны в космической отрасли, ее огромного вклада в изучение космоса, желания внести свой вклад в упрочнение позиций России в космической отрасли;
- 2. Повышение мотивации учащихся за счет интерактивных технологий, элементов игровой деятельности, современной среды программирования роботизированных систем;
- 3. Обеспечение возможности индивидуализации, персонализации и вариативности обучения;
- 4. Формирование навыков самостоятельной работы над выполнением проекта, взаимодействия и работы в команде, уважительного и конструктивного отношения к мнению других людей и критике своих действий.

Принципы отбора содержания

- принцип единства развития, обучения и воспитания;
- принцип систематичности и последовательности;
- принцип доступности;
- принцип наглядности;
- принцип взаимодействия и сотрудничества;

принцип комплексного подхода.

Основные формы и методы

При организации занятий по программе используются формы проведения занятий с активными методами обучения:
 □ групповые учебно-практические и теоретические занятия;
□ занятие в форме диалога, вопросов и ответов;
 □ занятие с работой по индивидуальным планам (свободные проекты); □ занятие - соревнование;
Планируемые результаты
Предметными результатами является формирование следующих
знаний, умений и способов деятельности: знать:
□ основные конструкции языка программирования Python 3;
□ принципы работы с SDK (Software Development Kit);
□ функции Руthon-библиотеки для программирования квадрокоптера на
языке программирования, принципы создания и работы подобной
библиотеки;
□ алгоритмы составления программы для решения многоуровневой задачи;
□ процедурное программирование;
□ принципы моделирования и степени детализации модели;
□ правила использования датчиков и обратной связи;
□ возможности использования справочной системы и библиотек программ;
□ теоретические основы работы робототехнических устройств;
□ основные узлы и принципы конструкции квадрокоптера;
□ порядок создания алгоритма программы для квадрокоптера;
\square правила техники безопасности при работе с компьютерной и электронной техникой, БПЛА.
□ роль и применение робототехники в жизни и промышленности;
□ принципы построения робототехнических систем и их значение;
уметь:
□ создавать программы для робототехнических средств при помощи языка
программирования и специализированных библиотек;
□ анализировать, планировать предстоящую практическую работу;
□ работать по предложенным инструкциям;
□ осуществлять контроль качества результатов собственной практической
деятельности;
□ самостоятельно определять математическую модель траектории полета
квадрокоптера и исполнения задачи в целом, производить необходимые
расчеты и изменения;
□ модифицировать имеющиеся программы, инженерные решения;
□ самостоятельно и/или с помощью учителя создавать проекты;

□ предвосхищать и моделировать поведение робототехнического устроиства
в зависимости от внешних условий;
владеть:
🗆 функциями языка программирования для программирования
квадрокоптеров;
🗆 способами реализации творческого замысла;
□ технологической последовательностью выполнения несложных миссий с
помощью квадрокоптера;
🗆 алгоритмами программирования по заданным условиям, по образцу, по
заданной схеме, по заданной несложной задаче.
Формы и методы контроля
Результаты освоения курса оцениваются и контролируются, в
основном, на основе публичной презентации и/или защиты созданных
обучающимися проектов.
Гакже применяются другие формы контроля:
□ тестирование;
□ поэтапный мониторинг результатов проектной деятельности;
🗆 контроль результата выполнения практических работ
🗆 зашита итогового проекта на своболную тему.

Механизм оценивания образовательных результатов

Для определения уровня знаний, умений и навыков обучающихся используются следующие виды контроля, каждый из которых имеет свое функциональное назначение:

- 1. Входной контроль проводится в начале периода обучения для определения уровня сложности, на который будет зачислен обучающийся.
- 2. Тематический контроль осуществляется для определения усвоения обучающимися пройденных тем.
- 3. Итоговый контроль проводится в конце обучения для определения степени выполнения поставленных задач.

Оценка результатов усвоения теоретических знаний и приобретения практических умений и навыков осуществляется по трём уровням: низкий, средний, высокий.

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

No	Название раздела,	Количество часов		Формы аттестации/	
п/п	темы	Теория	Практика	Всего	контроля
1	Предполетная				Устный опрос
	подготовка				
	Знакомство с	1	1	2	
	техническими	1	1	2	
	характеристиками				
	квадрокоптера				
2	Полетная практика	2	8	10	Демонстрация модели
3	Основы языка Python	6	6	12	Демонстрация модели
4	Полетные миссии	8	40	48	Демонстрация модели
		3	10	10	
	Итого			72	

СОДЕРЖАНИЕ ПРОГРАММЫ

Раздел «Предполетная подготовка»

Обзор программируемого квадрокоптера Tello Edu и его технических характеристик. Комплектация набора квадрокоптера. Принципы подключения к компьютеру. Система команд (SDK) и ее реализация в Техника безопасности. Разделение на группы для работы. Правила совместной работы.

Раздел «Полетная практика»

Полетные мсисии с управлением через приложение Tello. Полетные миссии с визуальным контролем. Полетные миссии в режиме FPV.

Раздел «Основы языка Python»

История языка Python, сфера применения языка, различие в версиях, особенности синтаксиса. Примеры на языке Python с разбором конструкций: циклы, условия, ветвления, массивы, типы данных, строки, списки, кортежи.

Раздел «Полетные миссии»

Взлет и посадка. Движение по осям, включение и выключение видеопотока, повороты. Прямолинейные движения с поворотами и без поворотов. Полет по траектории квадрата. Оптимизация программы с помощью циклов со счетчиком и до условия. Полет по траектории пятиугольника. Универсальная функция для полета по траектории правильного многоугольника. Полеты по многоугольников координатам. траектории ПО точным Алгоритмы исследования ограниченной области. Полет из края в край исследуемой Практическая работа Компьютер с программным текущий контроль – области, движение по спирали. Нахождение объекта с помощью инфракрасного высотометра. Реакция на событие. Освоение навыков анализа видеопотока и Программное пилотирование телеметрии. вне пределов Управление роботом с обратной связью. Автономный полет, получение высотометра. Программирование реакции событие. Моделирование совместных миссий. Синхронный старт.

КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

No	Режим деятельности	Дополнительная
		общеобразовательная
		общеразвивающая
		программа технической
		направленности
		«Робототехника»
1	Начало учебного года	01 сентября
2	Продолжительность учебного периода на	36 учебных недель
	каждом году обучения	
3	Продолжительность учебной недели	5 дней
4	Периодичность учебных занятий	1 раз в неделю
5	Количество занятий на каждом году	36 занятий
	обучения	
6	Количество часов всего	72
7	Окончание учебного года	31 мая
8	Период реализации программы	01.09.2023 - 31.05.2024

Организационно-педагогические условия реализации программы Кадровое обеспечение реализации программы

Педагог дополнительного образования, реализующий данную программу, имеет высшее профессиональное образование или среднее профессиональное образование в области, соответствующей профилю программы, без предъявления требований к стажу работы, либо высшее профессиональное образование или среднее профессиональное образование и дополнительное профессиональное образование по направлению «Образование и педагогика» без предъявления требований к стажу работы.

Методическое обеспечение программы

На занятиях используются различные *образовательные технологии* — технология группового обучения, технология развивающего обучения, технология исследовательской деятельности, коммуникативная технология обучения, технология решения изобретательских задач, проектная и здровьесберегающая технологии.

Методическое обеспечение программы включает приёмы и методы организации образовательного процесса, дидактические материалы, техническое оснащение занятий. Для обеспечения наглядности и доступности изучаемого материала педагог использует различные методические и дидактические материалы.

Материально-техническое обеспечение

Оборудование:

- 1. Ноутбуки с доступом в сеть Интернет и модулями WiFi;
- 2. Проектор или интерактивная панель;
- 4. Квадрокоптер Tello Edu по одному на группу учащихся из 2-х человек.

Программное обеспечение:

- 1. Браузер
- 2. Интерпретатор языка Python 3.x
- 3. Любая среда разработки Python;

Список литературы:

Нормативно-правовые документы:

- 1. Конвенция о правах ребенка, одобренная Генеральной Ассамблеей ООН 20.11.1989 г.
- 2. Конституция РФ.
- 3. Федеральный закон Российской Федерации от 29.12.2012 г. № 273-ФЗ «Об образовании в Российской Федерации».
- 4. Федеральный Закон от 31.07.2020 г. № 304-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации по вопросам воспитания обучающихся».
- 5. Приказ Министерства просвещения Российской Федерации от 09.11.2018 г. № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам».
- 6. Постановление Главного государственного санитарного врача РФ от 28.09.2020 № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организации воспитания и обучения, отдыха и оздоровления детей и молодежи»